Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.

Identifieur interne : 002929 ( Main/Exploration ); précédent : 002928; suivant : 002930

Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.

Auteurs : Liza M. Holeski [États-Unis] ; Michael L. Hillstrom ; Thomas G. Whitham ; Richard L. Lindroth

Source :

RBID : pubmed:22652923

Descripteurs français

English descriptors

Abstract

Plant adaptations for defense against herbivory vary both among species and among genotypes. Moreover, numerous forms of within-plant variation in defense, including ontogeny, induction, and seasonal gradients, allow plants to avoid expending resources on defense when herbivores are absent. We used an 18-year-old cottonwood common garden composed of Populus fremontii, Populus angustifolia, and their naturally occurring F(1) hybrids (collectively referred to as "cross types") to quantify and compare the relative influences of three hierarchical levels of variation (between cross types, among genotypes, and within individual genotypes) on univariate and multivariate phytochemical defense traits. Within genotypes, we evaluated ontogeny, induction (following cottonwood leaf beetle herbivory), and seasonal variation. We compared the effect sizes of each of these sources of variation on the plant defense phenotype. Three major patterns emerged. First, we observed significant differences in concentrations of defense phytochemicals among cross types, and/or among genotypes within cross types. Second, we found significant genetic variation for within-plant differences in phytochemical defenses: (a) based on ontogeny, levels of constitutive phenolic glycosides were nearly three times greater in the mature zone than in the juvenile zone within one cottonwood cross type, but did not significantly differ within another cross type; (b) induced levels of condensed tannins increased up to 65 % following herbivore damage within one cottonwood cross type, but were not significantly altered in another cross type; and (c) concentrations of condensed tannins tended to increase across the season, but did not do so across all cross types. Third, our estimates of effect size demonstrate that the magnitude of within-plant variation in a phytochemical defense can rival the magnitude of differences in defense among genotypes and/or cross types. We conclude that, in cottonwood and likely other plant species, multiple forms of within-individual variation have the potential to substantially influence ecological and evolutionary processes.

DOI: 10.1007/s00442-012-2344-6
PubMed: 22652923


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.</title>
<author>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA. holeski@wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hillstrom, Michael L" sort="Hillstrom, Michael L" uniqKey="Hillstrom M" first="Michael L" last="Hillstrom">Michael L. Hillstrom</name>
</author>
<author>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22652923</idno>
<idno type="pmid">22652923</idno>
<idno type="doi">10.1007/s00442-012-2344-6</idno>
<idno type="wicri:Area/Main/Corpus">002A16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A16</idno>
<idno type="wicri:Area/Main/Curation">002A16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A16</idno>
<idno type="wicri:Area/Main/Exploration">002A16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.</title>
<author>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA. holeski@wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hillstrom, Michael L" sort="Hillstrom, Michael L" uniqKey="Hillstrom M" first="Michael L" last="Hillstrom">Michael L. Hillstrom</name>
</author>
<author>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Chimera (MeSH)</term>
<term>Coleoptera (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Larva (MeSH)</term>
<term>Multivariate Analysis (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Seasons (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse multifactorielle (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Chimère (MeSH)</term>
<term>Coléoptères (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Herbivorie (MeSH)</term>
<term>Larve (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Saisons (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Chimera</term>
<term>Coleoptera</term>
<term>Genetic Variation</term>
<term>Herbivory</term>
<term>Larva</term>
<term>Multivariate Analysis</term>
<term>Phenotype</term>
<term>Seasons</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse multifactorielle</term>
<term>Animaux</term>
<term>Arbres</term>
<term>Chimère</term>
<term>Coléoptères</term>
<term>Herbivorie</term>
<term>Larve</term>
<term>Phénotype</term>
<term>Saisons</term>
<term>Variation génétique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant adaptations for defense against herbivory vary both among species and among genotypes. Moreover, numerous forms of within-plant variation in defense, including ontogeny, induction, and seasonal gradients, allow plants to avoid expending resources on defense when herbivores are absent. We used an 18-year-old cottonwood common garden composed of Populus fremontii, Populus angustifolia, and their naturally occurring F(1) hybrids (collectively referred to as "cross types") to quantify and compare the relative influences of three hierarchical levels of variation (between cross types, among genotypes, and within individual genotypes) on univariate and multivariate phytochemical defense traits. Within genotypes, we evaluated ontogeny, induction (following cottonwood leaf beetle herbivory), and seasonal variation. We compared the effect sizes of each of these sources of variation on the plant defense phenotype. Three major patterns emerged. First, we observed significant differences in concentrations of defense phytochemicals among cross types, and/or among genotypes within cross types. Second, we found significant genetic variation for within-plant differences in phytochemical defenses: (a) based on ontogeny, levels of constitutive phenolic glycosides were nearly three times greater in the mature zone than in the juvenile zone within one cottonwood cross type, but did not significantly differ within another cross type; (b) induced levels of condensed tannins increased up to 65 % following herbivore damage within one cottonwood cross type, but were not significantly altered in another cross type; and (c) concentrations of condensed tannins tended to increase across the season, but did not do so across all cross types. Third, our estimates of effect size demonstrate that the magnitude of within-plant variation in a phytochemical defense can rival the magnitude of differences in defense among genotypes and/or cross types. We conclude that, in cottonwood and likely other plant species, multiple forms of within-individual variation have the potential to substantially influence ecological and evolutionary processes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22652923</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>170</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.</ArticleTitle>
<Pagination>
<MedlinePgn>695-707</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-012-2344-6</ELocationID>
<Abstract>
<AbstractText>Plant adaptations for defense against herbivory vary both among species and among genotypes. Moreover, numerous forms of within-plant variation in defense, including ontogeny, induction, and seasonal gradients, allow plants to avoid expending resources on defense when herbivores are absent. We used an 18-year-old cottonwood common garden composed of Populus fremontii, Populus angustifolia, and their naturally occurring F(1) hybrids (collectively referred to as "cross types") to quantify and compare the relative influences of three hierarchical levels of variation (between cross types, among genotypes, and within individual genotypes) on univariate and multivariate phytochemical defense traits. Within genotypes, we evaluated ontogeny, induction (following cottonwood leaf beetle herbivory), and seasonal variation. We compared the effect sizes of each of these sources of variation on the plant defense phenotype. Three major patterns emerged. First, we observed significant differences in concentrations of defense phytochemicals among cross types, and/or among genotypes within cross types. Second, we found significant genetic variation for within-plant differences in phytochemical defenses: (a) based on ontogeny, levels of constitutive phenolic glycosides were nearly three times greater in the mature zone than in the juvenile zone within one cottonwood cross type, but did not significantly differ within another cross type; (b) induced levels of condensed tannins increased up to 65 % following herbivore damage within one cottonwood cross type, but were not significantly altered in another cross type; and (c) concentrations of condensed tannins tended to increase across the season, but did not do so across all cross types. Third, our estimates of effect size demonstrate that the magnitude of within-plant variation in a phytochemical defense can rival the magnitude of differences in defense among genotypes and/or cross types. We conclude that, in cottonwood and likely other plant species, multiple forms of within-individual variation have the potential to substantially influence ecological and evolutionary processes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Holeski</LastName>
<ForeName>Liza M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA. holeski@wisc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hillstrom</LastName>
<ForeName>Michael L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whitham</LastName>
<ForeName>Thomas G</ForeName>
<Initials>TG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015999" MajorTopicYN="N">Multivariate Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22652923</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-012-2344-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Ecol. 1984 Mar;10(3):499-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 May;60(5):991-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16817539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):481-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20170370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2000 Dec;54(6):1938-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Aug;53(4):1093-1104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Dec;16(23):5057-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):541-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Nov;91(11):3398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21141200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Jun;11(6):609-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Jan;9(1):78-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2007 Nov;82(4):591-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Apr;26(4):183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21367482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Nov;90(11):2969-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19967853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2269-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Mar;89(3):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2003 Jan;161(1):1-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2007 May;22(5):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17296244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20180699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2574697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Jun;119(4):467-473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Mar;89(3):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22470508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Jan;36(1):70-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20077129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1927 Oct 21;66(1712):361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17810230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1990 Dec;5(12):407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1990 Nov;5(11):356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Jul;90(7):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19694126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2007 Nov;20(6):2092-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17903186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Mar;97(2):215-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Jan;94(1):56-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):334-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 May;99(5):965-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Dec;92 (4):556-562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 16;250(4983):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17746915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Jul;21(7):925-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jul;55(7):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Feb;87(2):304-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16637355</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Hillstrom, Michael L" sort="Hillstrom, Michael L" uniqKey="Hillstrom M" first="Michael L" last="Hillstrom">Michael L. Hillstrom</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002929 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002929 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22652923
   |texte=   Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22652923" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020